A NOTE ON SUMMABILITY METHODS AND SPECTRAL ANALYSIS

BY
CARL S. HERZ¹

We are concerned with analyzing the spectrum of a bounded measurable function on the real line by means of certain summability methods. If $f \in L^1$, the Fourier transform is $\hat{f}(t) \equiv \int \exp(-itx)f(x)dx$ and Z(f) denotes the set of zeros of \hat{f} . Given $\phi \in L^{\infty}$ we may form the convolution $f\circ\phi(x) \equiv \int f(y)\phi(x-y)dy$. The spectrum of ϕ is defined by $\Lambda(\phi) = \bigcap Z(f)$ where the intersection is taken over all $f \in L^1$ such that $f \circ \phi \equiv 0$.

The underlying heuristic principle of this investigation is that $t \in \Lambda(\phi)$ if and only if the trigonometric integral $\int \exp(-isx)\phi(x)dx$ is summable, in some suitable sense, to 0 in a neighborhood of t. Since we do not assume that $\int_x^{x+1} |\phi(y)| dy = o(1)$ as $|x| \to \infty$, ordinary convergence is not suitable. Beurling(2) has treated Abel summability and Pollard, [4], the (R, 2) method. However their results may be extended to a large class of summability methods which are quite easy to describe. (Some of our theorems are new even for the Abel and (R, 2) cases.)

DEFINITION. A function $k \in L^1$ is a "spectral kernel" if k(0) = 1 and $k(x) = \int_{|x|}^{\infty} k'(y) dy$ where $k' \in L^1$. (We shall consider k' extended to negative arguments as an odd function.)

Set $\Phi_h(t) = \int \exp(-itx)k(hx)\phi(x)dx$. Taking the limit as $h\rightarrow 0$ gives a regular summability method.

THEOREM 1. If k is a spectral kernel, $\Phi_h(t) \to 0$ uniformly in any closed set at positive distance from $\Lambda(\phi)$. More precisely, if t is at a distance δ from $\Lambda(\phi)$, $|\Phi_h(t)| \leq \delta^{-1}v(\delta h^{-1})||\phi||_{\infty}$ where v depends only on k and $v(\tau) \to 0$ as $\tau \to \infty$.

Proof. It suffices to establish the inequality for t=0. We assume the open interval $(-\delta, \delta)$ does not meet $\Lambda(\phi)$. From this it follows, as we shall see in a moment, that if $g \in L^1$ and $\hat{g}(t) = h^{-1}\hat{k}(h^{-1}t)$ in $|t| \geq \delta$ then $\Phi_h(0) \equiv \int k(hx)\phi(x)dx = \int g(x)\phi(x)dx$. Given $f \in L^1$, let $V_{\tau}(\hat{f}) = \inf \|g\|_1$, where $\hat{g}(t) = \hat{f}(t)$ in $|t| \geq \tau$. Clearly $|\Phi_h(0)| \leq V_{\delta}\{h^{-1}\hat{k}(h^{-1}t)\} \cdot \|\phi\|_{\infty}$; however $V_{\delta}\{h^{-1}\hat{k}(h^{-1}t)\} = h^{-1}V_{\delta h^{-1}}(\hat{k}) = h^{-1}V_{\delta h^{-1}}\{(-it)^{-1}\hat{k}'\}$. By Sz-Nagy's generalization of Bohr's inequality, [5], $V_{\tau}\{(-it)^{-1}\hat{f}\} \leq (\pi/2\tau)V_{\tau}(\hat{f})$ for any $f \in L^1$. Hence $V_{\delta}\{h^{-1}\hat{k}(h^{-1}t)\} \leq (\pi/2\delta)V_{\delta h^{-1}}(\hat{k}')$. Also for $f \in L^1$, $V_{\tau}(\hat{f}) \to 0$ as $\tau \to \infty$.

Received by the editors August 16, 1956.

⁽¹⁾ The research for this paper was supported by the United States Air Force under Contract No. AF-18(600)-685 monitored by the Office of Scientific Research.

⁽²⁾ Beurling's results are scattered in several papers and in lecture notes. The most relevant of these is [2] where the essential ideas are given.

The statement of the theorem has $v(\tau) = (\pi/2) \, V_\tau(\hat{k}')$. To see the equality used at the beginning of the proof observe that if $\lambda > 1$, the function $\phi(-\lambda x)$ has its spectrum interior to the set $|t| \ge \delta$. Since the Fourier transform of f(x) = k(hx) - g(x) vanishes on this set, i.e., on a neighborhood of the spectrum of $\phi(-\lambda x)$, it follows from a corollary of Wiener's Tauberian Theorem, see for example [3], that $\int f(x)\phi(\lambda x)dx = 0$. Letting λ tend to 1 from above we have the desired equality.

For $t \in \Lambda(\phi)$, $|\Phi_h(t)| \leq h^{-1} ||k||_1 ||\phi||_{\infty}$. Neither this estimate nor the one of Theorem 1 can be improved as can be seen by taking $\phi(x) \equiv 1$. However, these estimates are misleading as far as the average behavior is concerned. Parseval's relation yields

$$\left\{ (2\pi)^{-1} \int |\Phi_h(t)|^2 dt \right\}^{1/2} \leq h^{-1/2} ||k||_2 ||\phi||_{\infty}.$$

The corresponding analogue of Theorem 1 is the simpler result.

THEOREM 2. Let k be a spectral kernel and Λ_{δ} the set of points at distance $\geq \delta$ from $\Lambda(\phi)$. Then $\{(2\pi)^{-1}\int_{\Lambda_{\delta}}|\Phi_{h}(t)|^{2}dt\}^{1/2}\leq \delta^{-1/2}w(\delta h^{-1})||\phi||_{\infty}$ where w depends only on k and $w(\tau)\to 0$ as $\tau\to\infty$.

Proof. The reasoning is similar to that of Theorem 1. Suppose $g \in L^1$ and $\hat{g}(t) = h^{-1}\hat{k}(h^{-1}t)$ in $|t| \ge \delta$. Then if $s \in \Lambda_{\delta}$, $\Phi_h(s) = \int \exp(-isx)g(x)\phi(x)dx$, so $(2\pi)^{-1}\int_{\Lambda_{\delta}}|\Phi_h(t)|^2dt \le \int |g(x)\phi(x)|^2dx \le \|\phi\|_{\infty}^2 \int |g(x)|^2dx$. The infimum of $\int |g(x)|^2dx$ taken over the set specified above is simply $(2\pi)^{-1}\int_{|t| \ge \delta}|h^{-1}\hat{k}(h^{-1}t)|^2dt$ $= (2\pi h)^{-1}\int_{|t| \ge \delta}|\Phi_h(t)|^2dt$. Set $w^2(\tau) = \tau \cdot (2\pi)^{-1}\int_{|t| \ge \tau}|\hat{k}(t)|^2dt$. Then $\{(2\pi)^{-1}\int_{\Lambda_{\delta}}|\Phi_h(t)|^2dt\}^{1/2} \le \delta^{-1/2}w(\delta h^{-1})\|\phi\|_{\infty}$, and since $\hat{k}(t) = o(t^{-1})$ as $t \to \infty$, $w(\tau) = o(1)$ as $\tau \to \infty$.

Suppose $f \in L^1$, $\phi \in L^\infty$ and we form the convolution $\psi = f \circ \phi$. There arises $\hat{f}(t)\Phi_h(t)$ of the equi-convergence of $=\int \exp(-itx)k(hx)\psi(x)dx$. A statement equivalent to the first sentence of Theorem 1 is that if T is a closed set and \hat{f} is constant on an ϵ -neighborhood of T then Ψ_h and $\hat{f}\Phi_h$ are uniformly equi-convergent in T. More interesting is the fact that if $(1+|x|)f(x) \in L^1$ and $\lim_{y\to\infty} (2y)^{-1} \int_{-y}^{y} |\phi(x)| dx = 0$ then Ψ_h and $f\Phi_h$ are uniformly equi-convergent everywhere. However, no matter how rapidly |f| decreases at ∞ , Ψ_h and $f\Phi_h$ need not be equi-convergent everywhere. In particular, let $\phi(x) = i \operatorname{sgn} x$ and let f be arbitrary except that $(1+|x|)f(x) \in L^1$. Then $\lim_{h\to 0} \Psi_h(0) - \hat{f}(0)\Phi_h(0) = \lim_{h\to 0} \Psi_h(0) = 2(d\hat{f}/dt)(0)$, regardless of what spectral kernel is used. Actually this example is completely typical of the type of exceptional behavior which can occur. For $\phi \in L^{\infty}$ let $\Lambda_0(\phi)$ be the set of points t at which

$$\lim_{j\to\infty} y^{-1} \int_0^y \left\{ \exp\left(-itx\right)\phi(x) - \exp\left(itx\right)\phi(-x) \right\} dx \neq 0.$$

It is known that every point of $\Lambda_0(\phi)$ is a cluster point of $\Lambda(\phi)$ and that $\Lambda_0(\phi)$

has measure zero(3).

THEOREM 3. Suppose k is a spectral kernel, $\phi \in L^{\infty}$, $\int (1+|x|)|f(x)|dx < \infty$, and $\psi = f \circ \phi$. Then $\Psi_h - \hat{f}\Phi_h$ is uniformly bounded and $\Psi_h(t) - \hat{f}(t)\Phi_h(t) \to 0$ as $h \to 0$ for all t with the exception of the null set where both $t \in \Lambda_0(\phi)$ and $df/dt \neq 0$.

Proof. What we actually prove is that $\Psi_h(t) - \hat{f}(t)\Phi_h(t) = -i(d\hat{f}/dt) \cdot F_h(t) + o(1)$ where $F_h(t) = h \int_0^\infty k'(hx) \left\{ \exp\left(-itx\right)\phi(x) - \exp\left(itx\right)\phi(-x) \right\} dx$ and o depends only on k', f, and $\|\phi\|_{\infty}$. By Wiener's Tauberian theorem, $\lim_{h\to 0} F_h(t) = \lim_{y\to\infty} y^{-1} \int_0^y \left\{ \exp\left(-itx\right)\phi(x) - \exp\left(itx\right)\phi(-x) \right\} dx$ whenever the limit on the right exists; so the theorem follows directly. For $y\neq 0$, set

$$F_h(t; y) = y^{-1} \int \exp(-itx) \{k(hx) - k[h(x+y)]\} \phi(x) dx.$$

An easy computation shows that

$$\Psi_h(t) - \hat{f}(t)\Phi_h(t) = -\int F_h(t; y) \exp(-ity)yf(y)dy.$$

To conclude the proof we claim $F_h(t; y) - F_h(t) \to 0$ boundedly as $h \to 0$. The calculation is effected by substituting for k in terms of k' in the definition of $F_h(t; y)$, whence

$$|F_{h}(t;y) - F_{h}(t)| = \left| \int \left\{ y^{-1} \int_{hx}^{hx+hy} k'(u) du - hk'(hx) \right\} \exp(-itx) \phi(x) dx \right|$$

$$\leq ||\phi||_{\infty} \int (hy)^{-1} \int_{0}^{hy} |k'(x+u) - k'(x)| du dx$$

$$= ||\phi||_{\infty} (hy)^{-1} \int_{0}^{hy} \int |k'(x+u) - k'(x)| dx du$$

$$\leq 2 ||k'||_{1} ||\phi||_{\infty}$$

and $\rightarrow 0$ as $h\rightarrow 0$ for each y.

Equi-convergence in the mean is a much simpler matter. A trivial generalization of a result of Beurling, [1], is

THEOREM 4. Suppose k is a spectral kernel, $\phi \in L^{\infty}$, $\int (1+|x|^{1/2})|f(x)|dx < \infty$, and $\psi = f \circ \phi$. Then $\int |\Psi_h(t) - \hat{f}(t)\Phi_h(t)|^2 dt \to 0$ as $h \to 0$.

Next we turn to some questions in the converse direction from Theorems

⁽³⁾ The latter statement follows from an affirmative answer given by W. H. J. Fuchs and others to the author's Research Problem (Bull. Amer. Math. Soc. Research Problem 62-1-2). The solution is unpublished, but the idea is simple. One observes that it is sufficient to take a sequence of y's, say $y=n^2$, in the limit. Then by Plancherel's theorem one has a sequence of functions converging rapidly in the mean to zero. Such a sequence must also converge almost everywhere to zero.

1 and 2. An elementary result using few of the assumptions on k is this one.

THEOREM 5. If for some $\epsilon > 0$, $\lim \inf \int_{t-\epsilon}^{t+\epsilon} |\Phi_h(s)| ds = 0$, then $t \in \Lambda(\phi)$.

Proof. Choose $f \in L^1$ such that $\hat{f}(t) \neq 0$ and $\hat{f}(s) = 0$ for $|s-t| \geq \epsilon$.

$$(2\pi)^{-1}\int \exp(isx)\Phi_h(s)\hat{f}(s)ds = \int k(hy)\phi(y)f(x-y)dy.$$

Since $k(hy) \rightarrow 1$ boundedly as $h \rightarrow 0$, the right hand side converges to $f \circ \phi$. Hence the left hand side converges, and our assumption ensures that the limit is zero. Thus $f \circ \phi = 0$; by definition $\Lambda(\phi) \subset Z(f)$ so $t \notin \Lambda(\phi)$.

The succeeding theorem involves a hypothesis about uniqueness whose verification may be a difficult and delicate matter.

DEFINITION. The summability kernel k is of type UL^{∞} if $\phi \in L^{\infty}$ and $\Phi_h(t) \to 0$ everywhere imply $\phi = 0$ almost everywhere.

THEOREM 6. Suppose k is a spectral kernel of type UL^{∞} and $\phi \in L^{\infty}$. If $\Phi_h(s) \to 0$ in a neighborhood of the point t then $t \notin \Lambda(\phi)$.

Proof. Suppose $\Phi_h(s) \to 0$ in $[t-\epsilon, t+\epsilon]$ for some $\epsilon > 0$. By Baire's category theorem, given a sequence $h_n \to 0$, there exist points t_1 , t_2 , t_3 , t_4 with $t-\epsilon < t_1 < t_2 < t < t_3 < t_4 < t + \epsilon$ such that $\Phi_{h_n}(s) \to 0$ boundedly for $s \in [t_1, t_2]$ and $s \in [t_3, t_4]$. According to Theorem 5 the intervals (t_1, t_2) and (t_3, t_4) are complementary to $\Lambda(\phi)$. Now choose f such that $\int (1+|x|)|f(x)|dx < \infty$, $\hat{f}(s)=0$ when $s \leq t_1$ or $s \geq t_4$, and $\hat{f}(s)=1$ for $t_2 \leq s \leq t_3$. Put $\psi = f \circ \phi$. The derivative of \hat{f} is 0 on $\Lambda(\phi)$ so by Theorem 3, $\Psi_h(s) \to 0$ everywhere. Since k is of type UL^∞ , this implies $\psi \equiv 0$, i.e., $t \in \Lambda(\phi)$.

Combining Theorems 1 and 6 we have

COROLLARY. Under the hypotheses of Theorem 6, if $\Phi_h(t) > 0$ in an open interval, the convergence is uniform in each closed subinterval.

For a discussion of ordinary convergence, k(x)=1 for $|x| \le 1$, =0 for |x| > 1, see [6]. In this case modifications of all the preceding theorems are valid under the hypothesis $\int_x^{x+1} |\phi(y)| \, dy = o(1)$ as $|x| \to \infty$. More generally, under some appropriate assumption of the form " ϕ is asymptotically small," e.g., $\phi(x) = o(1)$ or $\phi \in L^q$, $q < \infty$, one can replace the requirement that k be a spectral kernel by the conditions: $k \in L^1 \cap L^\infty$, k(0) = 1, k is continuous at 0, and $\int |k(x+y)-k(x)| \, dx = O(y)$ as $y\to 0$. Then Theorem 3 holds in the form: $\Psi_h(t)-\hat{f}(t)\Phi_h(t)\to 0$ uniformly, while the proof of Theorem 4 is unmolested. Less precise versions of Theorems 1 and 2 may be derived from Theorems 3 and 4 respectively.

BIBLIOGRAPHY

1. Arne Beurling, Sur la composition d'une fonction sommable et d'une fonction borrnée, C.R. Acad. Sci. Paris vol. 225 (1947) pp. 274-275.

- 2. ———, Sur une classe de fonctions presque périodiques, loc. cit. pp. 326-328.
- 3. Roger Godemont, Théorèmes Tauberiens et théorie spectrale, Ann. Ecole. Norm. vol. 64 (1947) pp. 119-138.
- 4. Harry Pollard, The harmonic analysis of bounded functions, Duke Math. J. vol. 20 (1953) pp. 499-512.
- 5. Bela Sz.-Nagy, Über gewisse Extremalfragen bei transformierte trigonometrische Entwicklungen, Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Mathematisch-Physische Klasse vol. 90 (1938) pp. 103-134 and vol. 91 (1939) pp. 3-24
- 6. Antoni Zygmund, Sur la théorie riemannienne des séries trigonométriques, Math. Zeit. vol. 24 (1926) pp. 47-104.

Cornell University, Ithaca, N. Y.